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Imagine you're organizing a school tournament in table tennis, chess, e-sports, or futsal. You want it to
be as fair as possible — so that every player has the chance to face all the others. That's exactly what
the round robin system is for.

Its main advantage is fairness: the final ranking depends solely on the players’ or teams' performance,
not on a random draw of opponents. On the other hand, the number of matches grows quickly with
the number of participants — planning such a tournament can be quite a challenge. And this is where
combinatorics comes into play — the mathematics of counting possibilities.

Futsal Tournament

Exercise 1. Nine teams have registered for a futsal tournament. It will be played in a round robin
format, meaning each team plays one match against every other team. For each win, a team earns
2 points; for a draw, 1 point; and for a loss, 0 points. The final ranking is determined by the total
number of points earned across all matches.

How many matches need to be played in the tournament? In how many different ways can the
tournament schedule be arranged, assuming there is only one field available and the matches are
played one after another?

Solution. The total number of matches played corresponds to the number of all unordered pairs that
can be formed from nine teams. In other words, it equals the number of two-element combinations
without repetition from a set of nine elements. This gives a total of

)-»

To determine the number of possible tournament schedules, we are essentially counting all the different
orderings of the 36 matches. Therefore, the total number of possible match schedules is

36! = 371,993,326,789,901,217,467,999,448,150,835,200,000,000 = 3.72 - 101,

Let us note that if we were to gather a comparable number of grains of sand, each with a volume of
approximately 10713 m3, the entire pile would have a volume on the order of 10%® m?, which is roughly
ten times the volume of the Sun. Rather than a pile, this would be a relatively massive celestial body.

Exercise 2. Show that if any team in the tournament described in the previous problem earned a
total of 13 points, then it must be among the top four teams in the tournament.

Solution. We will use proof by contradiction. Suppose that five teams each earned 13 or more points.
Since each match distributes 2 points between the two teams, the total number of points distributed in
the entire tournament is 2 - 36 = 72. Among the five teams, at least 5- 13 = 65 points must have been
distributed. That would leave at most 7 points for the remaining four teams.
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However, these four teams play (;1) = 6 matches among themselves, and must therefore divide 12 points
between them. So the total number of points would have to be at least 77, which is impossible. We
have reached a contradiction.

Therefore, there can be at most four teams with 13 or more points.

A Fairer Tournament

This time, seven teams have signed up for the next edition of the futsal tournament described in the
previous problems. When preparing the tournament schedule, the organizer introduced a new condition:
no team is allowed to play in two back-to-back matches. This way, players can avoid playing while tired,
and the tournament becomes fairer.

Libor came up with an algorithm for generating a sequence of matches that meets this requirement. His
idea is based on the following table:

t)'fm 2 D

tym 3 | D2 | Dy

t}?m 4 | D3 | Dy | Dy

tYm 5 Dy | D3 | D2 | Dy

tym 6 | Ds | Da | D3 | D2 | Dy

tym 7 D5 | Dy | D3 | D2 | D1
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Figure 1: Table for generating a fair tournament schedule

Each cell in the i-th row and j-th column corresponds to the match between team (i + 1) and team j.
The desired match sequence will follow the order in which Libor selects these cells. For clarity, we will
label the cells according to the teams involved in each match, such as [1;2], [3; 5], and so on. Next, we
define the longest diagonal starting at [1;2] and ending at [6;7] as Dy, the shorter diagonal starting at
[1; 3] and ending at [5;7] as D2, and so on.

Libor’s algorithm proceeds as follows: - First, select the cell in the first column and last row, i.e. [1;7];
- Next, go through all the cells of diagonal D; that lie in even-numbered columns, from left to right;
- Then go through the remaining cells of diagonal D; that lie in odd-numbered columns, again from
left to right; - Then go through all the cells of diagonal D5 from left to right; - Then do the same for
diagonal Ds, then Dy, and so on.

For a tournament with seven teams, this gives the following match sequence:
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[3;6], [4:7], [1;5], [26], [37], [1;6], [2;7].

Exercise 3. Using Libor’s algorithm, list the sequence of matches for a tournament with 9 teams,
and verify that no team appears in two consecutive matches.

Solution. Using the algorithm, we obtain the following sequence of 36 matches. It is clear that no two
consecutive matches share a team — all team numbers in neighboring pairs are different.

(L9, (23], [45], [6:7], [8:9], [1:2], [3:4], [5:6], [7:8], [L;3], [2:4], [3;5],

[4;6], [57), [6:8], [7:9], [1;4], [2;5], [3;6], [47], [58], [6;9], [L;5], [2;6
(3:7, 48], [5:9], [1:6], [2:7], [3:8], [49], [L;7, [%8], [%9, [L8], [2;9

Exercise 4. Does Libor's algorithm work for any number of participating teams? If not, for which
values of n does it work? And can you construct the required sequence for those cases?

Solution. Let n be the number of participating teams (from the context of the problem, it is clear that
n > 1). From Libor’s algorithm, we derive the following sequence of cells, divided into several successive
sections based on their positions in the table. For diagonal D;, we need to distinguish between even

and odd n:

[Lin], (1st cell)
[2;3],[4;5],...,[n— 1;n], (1st part of diagonal D1, odd n)
[1;2],[3;4],...,[n —2;n — 1], (2nd part of diagonal D1, odd n)
[2;3],[4;5],...,[n —2;mn — 1], (1st part of diagonal Dy, even n)
[1;2],[3;4],...,[n — 1;n], (2nd part of diagonal Dy, even n)
[1;3],[2;4],...,[n —2;n], (diagonal Ds)

:4],12;5], ..., [n — 3;n], (diagonal Ds)

-[1;2'—1—1],[2;@'—1—2],...,[71—2’;71],
[1;i+2],[2;¢0+3],...,[n— (i +1);n],

[1;n — 1], [2;n].

(diagonal D;, where i <n —2)
(diagonal D;41)

(diagonal D,,_5)

Two consecutive cells belonging to the same section cannot contain the same number. In both parts
of diagonal Dy, any two consecutive cells can be written in the form [, 4+ 1] and [j + 2,5 + 3], and
in any diagonal D; for ¢ > 1, any two consecutive cells have the form [j,j + 4] and [j + 1,5+ + 1].
Therefore, it suffices to check under which conditions the last cell of one section can share a number
with the first cell of the following section. These special cases must then be considered individually.

1st cell — 1st part of diagonal D;. The cell [2;3] follows immediately after [1;n] regardless of
whether n is even or odd. The required condition that all four numbers (from the two consecutive cells)
be distinct is therefore not satisfied for n = 2 and n = 3.
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1st part — 2nd part of diagonal D;. For odd n, the cell [1;2] follows after [n — 1;n], which again
leads to the already mentioned cases n = 2 and n = 3. For even n, the transition is from [n — 2;n — 1]
to [1; 2], which also fails the condition when n = 4.

2nd part of diagonal D; — diagonal D,. For odd n, the transition is from [n —2;n —1] to [1;3]. The
condition of all components being distinct is violated for n € {2;3;4;5}. If n is even, the transition is
from [n — 1;n] to [1;3]. All values of n not excluded so far satisfy the required condition.

Diagonal D, — diagonal D; ;. The cell [1;7 + 2] follows after the cell [n — i;n]. This gives rise to
four possible equalities under which the required condition of all components being distinct is violated:

n—1=1, n—t=1+2, n=1, n=1-+2.

The third equality is clearly not possible. The first equality would imply ¢ = n — 1, but 7 can take at
most the value n — 2. If the fourth equality holds, then i = n — 2; however, diagonal D,,_s is the last
section, and the sequence ends there — no next diagonal follows. Finally, the second equality can be
rewritten as ¢ = "T_2 If n is odd, this cannot hold. But for any even n, there is a unique value of 4
that satisfies it. Therefore, the algorithm fails for every even value of n; for example, for n = 14, we

have i = 6, the last element of diagonal Dg is [8; 14] and the first element of diagonal D7 is [1;8].

In conclusion, Libor's algorithm works without any issues for odd values of n, except for n = 3 and
n = 5. However, it also trivially works for n = 2, since two teams play just a single match. For the
remaining values — the even n, and the cases n = 3 and n = 5 — we now need to try to construct the
required sequences in a different way. Let us first note that for n = 3 and n = 4, it is impossible:

= For n = 3, we must order the three matches [1;2], [1;3], [2;3], but every such ordering violates
the condition.

= For n = 4, we may, without loss of generality, choose the first match to be [1;2]. The next must
then be [3;4], and then again [1;2], which is not allowed.

For all other values of n, we are able to construct sequences with the desired properties. Since there are
multiple such sequences (and multiple algorithms to generate them), let us at least give a few examples
obtained by modifying the original Libor algorithm. For n = 5, we modify the algorithm as follows:

= First, select the cell in the first column and last row, i.e. [1;5];

= Next, go through all the cells of diagonal D; in even-numbered columns from left to right;

= Then go through the remaining cells of diagonal D1 in odd-numbered columns from left to right;
= Then go through all the cells of diagonal D3 from right to left;

= Finally, go through all the cells of diagonal D5 from right to left.

The resulting sequence is:

(5], (23], [45], (1,2, [3:4], [2:5], [1;4], [3;5], [24], [1;3].
For even n other than 2 and 4, we compute the number k = ”;2. (This number was the source of issues
in the general-case discussion above.) We then apply Libor’s algorithm with one key modification: we
switch the order of diagonals Dy 1 and Dy o when selecting their cells. Since the rest of the algorithm
remains unchanged, it is enough to check only the transitions between these particular diagonals.

Diagonal D, — diagonal Dy 5. The cell [n — k;n] is followed by the cell [1;% + 3]. Substituting for
k, simplifying, and checking for possible repeated numbers yields the following four equalities:

n—+2 n+2 n+4 n+4
=1, = , n=1, n= .
2 2 2 2
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The second and third equalities cannot hold. The first (and equivalently, the fourth) is satisfied only
when n = 0 (or n = 4), which is invalid in our context.

Diagonal Dy > — diagonal Dy 1. The cell [n — (k +2);n] is followed by the cell [1; k4 2]. Again, we
derive four equalities that would violate the condition if true:
n—2 n—2 n+2 n+2

=1, = , n=1, n=
2 2 2 2

None of these equalities can hold, because n cannot be 4, 1, or 2.

Diagonal D;.; — diagonal Dy 3. The cell [n — (k+ 1);n] is followed by the cell [1; k£ +4]. As before,
we obtain the following four equalities:
n n+6 n+6

BZI, — = , n=1, n = .
2 2 2 2

The first three equalities are already excluded based on earlier arguments. The fourth equality holds
when n = 6; however, for this value, diagonal Dy 3 does not exist, since k + 3 = % +3 =05. (Recall
that for n = 6, only diagonals D; through D, are defined.) Thus, for n = 6, the algorithm ends after
selecting the members of diagonal Dy1 = Ds.

The modified algorithm therefore successfully constructs a sequence with the desired properties for all
even values of n except for n = 2 and n = 4. The only natural numbers n > 1 for which no such
sequence exists are n = 3 and n = 4.
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