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Trophic functions in predator-prey mod-
els
Mathematical models play an important role in the study of nature. These models open the possbilities
to predict future development, but they also have other important roles.
The use of ecological models is sometimes referred to as physical approach in ecology because they
study the ecosystem in terms of the evolution of populations and using mathematical methods originally
derived to solve physical problems. The outputs of the models include the following information.

• Predictions Ability to work with mathematical models of ecosystems allows to predict future
ecosystem development. This may include the evolution of population in static environment as
well as an evolution in an environment in which the parameters are changing. Knowledge of the
model will then reveals how the parameters change the ecosystem.

• Understanding the principles Mathematical models allow ecologists and scientists to examine
the interactions between different components of ecosystems and understand the dynamics of
these systems. They help to identify factors that influence the structure and function of these
ecosystems.

• Optimising decision making Mathematical modelling of ecosystems can can be used to optimize
decision-making in areas such as biodiversity conservation or forest and fisheries management. It
helps to identify the best strategies for to achieve desired objectives.
One of the fundamental relationships in ecosystems is the relationship between predator and prey.
This relationship can be the only interaction in an ecosystem or it can be complemented by
other interactions. The importance of predator-prey models will be illustrated with the following
historically significant examples.

Lotka-Volterra model
In 1926, one of the first predator-prey models was published by the Italian mathematician Vito Voterra.
The motivation to build this model was the fact that during the fishing restrictions of World War I in the
percentage of predatory fish in the catch increased. The marine biologist Umberto D’Ancona noticed
this phenomenon and was not able to find an explanation. He even expected the opposite: with the
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restrictions on fishing he expected an increase in the percentage of smaller fish species that are food for
predators. D’Ancona introduced this problem to his father-in-law Volterra. Volterra’s model explains
this behaviour as as a result of the simple idea of predator-prey interaction.
The model contains two equations. The first equation describing the prey population contains the
assumption that the population grows naturally, but the growth is slowed down by predation. More
predators lead to a slower growth of the prey. Too many predators can even lead to the fact that the
size of the prey population will decline and the prey will die out. The second equation (for predator
population) contains the assumption that without the presence of prey, the predator population dies out.
However, the more prey is available to predators, the more likely this extinction turns into an increase
in the predator population.
In the system described above, cycles occur naturally. Enough prey allows the predator population to
increase. Many predators then act on the prey population negatively and the prey population begins to
die off. This extinction results in a lack of food for the predators and and the predators also begin to
die out. Over time, the predator population is reduced to the point where the prey feels the presence
of the predator little. Therefore, the prey population can grow again and multiply to its original state.
However, the increase in prey population allows the predator population to grow again, closing the
cycle. These periodic changes in the size of both populations can be seen in the records of fur buying
of snowshoe hare and lynx furs in the Hudson Bay area.
Volterra’s model explains not only the origin of the cycles, but also that by decreasing the hunting rate,
the equilibrium position around which the predator and prey oscillate shifts in favour of the predator
and not the prey. This phenomenon observed by D’Ancona is called the Volterra effect.
The same model as Volterra’s has been proposed in 1910 by the American mathematician Alfred J.
Lotka. For this reason is the model called the Lotka-Volterra model.

Figure 1: On the left, a typical pattern of predator and prey population sizes. A maximum of prey is
followed by a maximum of predator and then a decline in both populations. On the right, the island
fox, which has gone from being a top predator on its island to a prey endangered by extinction

Spruce budworm model
Similar periodic fluctuations as in the Lotka-Volterra model can also be observed in Canadian forests.
Here, after approximately 30 to 40 years mass outbreak of the spruce budworm (Choristoneura fumifer-
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ana) occurs. The population of this butterfly is relatively small most of the time, but some years it
increases by a factor of thousands and its caterpillars can kill up to 80% of the trees in of the forest,
virtually destroying it. One of the last mass occurrences was since 2006 in Quebec. Here, by 2019,
about 9.6 million hectares of forest [^1], more than the size of Hungary.
See [^1]: source at https://www.nrcan.gc.ca.
In 1978, scientists D. Ludwig, D. D. Jones and C. S. Holling proposed a model that was not only able
to model the evolution of the spruce budworm population, but helped to clarify the reasons why the
described outbreaks occur. The reason is predation. In this case, it is the consumption of caterpillars
by birds. Birds served as a limiting factor in nature for caterpillar numbers, but only up to a certain
limit. When the forest grows large enough, it provides enough food for the caterpillar population. The
caterpillar population then grows to to such an extent that the birds reach saturation in their food
consumption and they are no more able to reduce the caterpillar population. Thus, the role of birds as
predators becomes less important and the caterpillar population can multiply rapidly and then devastate
the forest.
In this case, predation is important to limit the population caterpillars. Because birds as predators
have a much slower reproductive cycle than the insect, their population can be considered constant.
Through saturation, birds can then limit the growth rate to a limited extent. However, this limitation
from a certain size the spruce budworm population is no longer sufficient, and it becomes uncontrollably
overpopulated.

Island fox model
The island fox (Urocyon littoralis) is a unique species, endemic only to the islands around California. It
is as large as a cat and trusting due to the absence of natural enemies. As a species, it is sensitive and
vulnerable due to low genetic variation and low resistance to diseases introduced from the mainland. It
is one of the smallest canids. Unlike other canids, however, it can climb trees.
As a result of human activity, the population of the island fox was near to extinction at the end of
the millennium. On San Miguel Island, the population has declined from 450 adults in 1994 to 15 in
19991. A similar situation has been experienced also on the other islands, each of which is inhabited
by a separate subspecies of the island fox. The cause of the mortality was a chain of events: The
production of the insecticide DDT in the 1940s resulted in the extinction of the bald eagle (Haliaeetus
leucocephalus) which has been replaced by the golden eagle (Aquila chrysaetos). A predator feeding
fish-eating predator was replaced on the island by a mammal-preferring predator. This was fatal to the
island fox. The foxes, formerly apex predators, suddenly became prey, and by the turn of the millennium
they were close to extinction. Moreover, unlike the Lotka-Volterra model, there was no hope of a return
foxes back to their original numbers through oscillations, because the eagles also had alternative food
in the form of wild pigs and skunks.
Fortunately, with tremendous effort, the island fox as a species has been saved. First, the causes of
their of the decline was identified. Then it was enough to replenish the fox population and ensure the
conditions in which the population is stable. This involved excluding feral pigs, the relocation of golden
eagles to mainland, the return of bald eagles, the artificial breeding of foxes, their return to the wild and
their vaccination against introduced diseases. All of this was achieved in record time, in one decade. It
was one of the most successful rescues mammal rescue programme.

1For source see https://www.iucnredlist.org/species/22781/13985603.
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Trophic functions
An important component of predator-prey models, whether it be any of the above examples, is the
trophic function. This function describes the effect of a single predator on a prey population. It is
given by the rate at which the growth of prey is slowed by a single predator. If x is the size of the prey
population and y is the rate at which one predator slows the growth of prey down (i.e., the amount of
prey taken by a predator in unit time), we can write this function mathematically in the form

y = f(x).

We’ll try to find natural assumptions that the trophic function must satisfy. Then we will try to find a
suitable analytical form.

Exercise 1. Assumptions about the predator’s effect on prey are reflected in the properties that a
trophic function must have.

1. A predator in an environment with a poor food supply also has a poor catch. More prey means
easier prey reach and thus more catch.

2. Without food, a predator will not catch anything. If the amount of prey is zero, the amount of
prey a predator will catch per unit time is zero.

3. Predators consume food only until they are saturated. If food is is abundant, predators will not
catch more food per unit time than their saturation.

Express these characteristics in terms that we use to describe properties of functions. What property
of functions does each of the following correspond to points?

Solution.

1. The function y = f(x) is increasing.

2. The function y = f(x) goes through the origin, i.e., f(0) = 0.

3. The function y = f(x) is bounded above. Since the function is increasing and is bounded above,
its graph has a horizontal asymptote at infinity.

Holling’s type II trophic function
The trophic function indicates how much prey one predator kills per unit time for a given prey population
size. It must therefore be defined on set of non-negative numbers and the function values will be non-
negative (this follows from points 1 and 2 in Exercise 1). In the previous section it was shown that
the trophic function has to pass through the origin and grow to the horizontal asymptote (growth and
boundedness from above). These properties will not be satisfied if we look for a trophic function in the
set of linear functions. So we try the simplest nonlinear function, the inverse proportionality.
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Figure 2: On the left, two typical trophic functions, called Holling’s functions. The growth rate of the
function of type II slows down. The type III function grows slowly at first, accelerates and then slows
down again. On the right, the type II function as part of transformed graph of inverse proportionality.
(own figure)

Exercise 2. Graph the function y = 1
x . On this function perform transformations that change the

graph as described below.

1. Scale the graph k times in the vertical direction. This does not change the monotonicity nor
the position of the horizontal asymptote, but we can change the growth rate.

2. Flip the graph around the horizontal axis and move S units up. This produces a function which
is positive and increasing for positive x and the function grows to the asymptote of S.

3. After the above transformations, the graph has a vertical asymptote at zero and one intersection
with the horizontal axis to the right of the origin. Move the graph to the left so that the vertical
asymptote is to the left of the vertical axis and the intersection with the x-axis is shifted to the
origin.

Solution. A function whose graph is obtained by rescaling the graph of the function y = 1
x in the vertical

direction k times is
y =

k

x
.

The inversion is achieved by multiplying the function by a factor of −1 and the shift is achieved by by
adding the value of S. These adjustments give the function

y = S − k

x
.

The shift to the left by b is achieved by substituting the expression x+b for x. This gives us the function

y = S − k

x+ b
.

When converted to the common denominator the function takes the form

y =
Sx+ Sb

x+ b
− k

x+ b
=

Sx+ (Sb− k)

x+ b
.

To ensure f(0) = 0, the followin condition must be satisfied.

Sb− k = 0
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This condition shows that the three constants are not independent, but there is a relationship between
them.
Note. In the previous exercise we derived an analytical form for one of the basic trophic functions. This
is an increasing function, which initially grows towards the horizontal asymptote and the rate of growth
gradually decreases. Such a function is called the Holling’s type II function. It is common to write it in
the form

f(x) =
Sx

x+ b
, (1)

where S is the saturation level and b is a constant. The role of the constant b will be explained in the
following exercise.

Exercise 3. Show that for a population size equal to b the value of the trophic function (1) is equal
to half the value of saturation.

Solution. By setting x = b in (1), we get

f(b) =
Sb

b+ b
=

Sb

2b
=

S

2
.

This proves the statement.
The following exercise shows the reverse process, where from a trophic function of the form (1) we
derive a form showing the successive transformations of the function y = 1

x .

Exercise 4. Modify the formula for the function

y =
6x

x+ 2

into its basic form, i.e. so that we can read the successive transformations of the function y = 1
x$ on

the graph of the given function.

Solution. We solve the problem by cleverly modifying the fraction. In the numerator, we create a
multiple of the denominator, divide the fraction in two and truncate:

6x

x+ 2
=

6(x+ 2)− 12

x+ 2
=

6(x+ 2)

x+ 2
− 12

x+ 2
= 6− 12

1

x+ 2

This calculation shows that the graph of the above function is obtained by expanding the graph of the
function y = 1

x in the vertical direction twelve times, by inverting it around the horizontal axis, shifting
six units up and two units to the left.
The same result can be obtained by dividing the denominator by the numerator.

Exercise 5. Construct a trophic function if you know that the predator saturation is 6, and that the
consumption rate is half of the saturation for a prey population of 210.

Solution. Thanks to the note before the Exercise 3 about the general form of the trophic function, we
know that the prescription will be of the form

y =
Sx

x+ b
,

where S is the saturation value of the predator, i.e.

y =
6x

x+ b
.
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We can tell the value of the parameter b straight away as a resuls of Exercise 3, but we can also quickly
compute it from the second condition in the problem. Really, we know that

3 =
6 · 210
210 + b

and from there, b = 210. So the final form of the function is

y =
6x

x+ 210
.
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