

Math4You

2023-2025

GDP growth rate

Gross Domestic Product (GDP) is a monetary expression of the total value of goods and services newly created in a given period in a given territory. GDP is used in macroeconomics as an indicator for determining the performance of national economies. The figure shows the gross domestic product per capita of each country in the European Union in 2023.

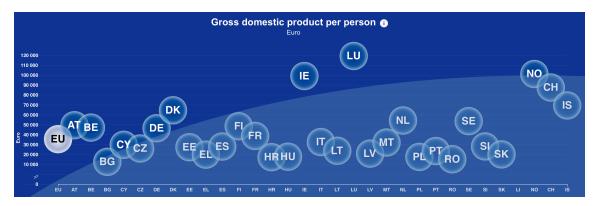


Figure 1: GDP per capita of individual EU countries in 2023

Recall that for n values of $x_1, x_2, \ldots x_n \in \mathbb{R}$ the **arithmetic mean** is

$$\overline{x}_A = \frac{x_1 + x_2 + \dots + x_n}{n}$$

and the geometric mean is

$$\overline{x}_G = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}.$$

It holds that $\overline{x}_A \geq \overline{x}_G$, equality occurs if $x_1 = x_2 = \cdots = x_n$.

In this assignment, we will consider data that show the evolution of GDP per capita in the EU between the years 2003 and 2022. For these values, we will be interested in the **annual growth rate**

 $y_i = x_i - x_{i-1},$

where x_i , x_{i-1} are the GDP values in two consecutive years.

Co-funded by the Erasmus+ Programme of the European Union.

The **relative annual increase** is the annual increase relative to the original value. It is calculated as the fraction

$$\frac{x_i - x_{i-1}}{x_{i-1}}.$$

To characterize data with a certain trend, we often need to calculate the growth rate, for which it is necessary to use the geometric mean.

The growth coefficient is the ratio of two consecutive values x_{i-1}, x_i , i.e.

$$z_i = \frac{x_i}{x_{i-1}}.$$

We define the **average growth coefficient** \overline{z}_G as the geometric mean of the individual growth coefficients for a given period

$$\overline{z}_G = \sqrt[n]{z_1 \cdot z_2 \cdot \dots \cdot z_n}.$$

This relationship can be modified by truncating the fractions below the square root

$$\overline{z}_G = \sqrt[n]{\frac{x_2}{x_1} \cdot \frac{x_3}{x_2} \cdot \dots \cdot \frac{x_n}{x_{n-1}}} = \sqrt[n]{\frac{x_n}{x_1}}.$$

From here we can see that when calculating the average growth factor, we only need to work with the first and last values of our sequence.

We then call the value $\overline{z}_G - 1$ the **average growth rate**.

The table shows the GDP per capita values in European Union between 2003 and 2022 (from 2020 for 27 countries).

Year	GDP [Euro/capita]
2003	20 3 30
2004	21180
2005	22010
2006	23200
2007	24550
2008	25260
2009	24050
2010	24900
2011	25660
2012	25770
2013	26010
2014	26580
2015	27500
2016	28190
2017	29320
2018	30290
2019	31310
2020	30050
2021	32520
2022	35 280

Note Data from the table can be copied from the Eurostat dataset https://ec.europa.eu/eurostat/databrowser/view/NAM and processed in a spreadsheet.

Exercise 1. Calculate the annual GDP per capita growth rate.

Solution. The annual growth rate of GDP per capita is the difference between two consecutive values of x_i . The annual growth rate for 2003 is then

$$x_2 - x_1 = 21\,280 - 20\,330 = 850$$

The annual growth rates in the following years are shown in the table below.

Year	GDP [Euro/capita]	Annual growth [Euro/capita]
2003	20330	
2004	21180	850
2005	22010	830
2006	23200	1 190
2007	24550	1 350
2008	25260	710
2009	24050	-1210
2010	24900	850
2011	25660	760
2012	25770	110
2013	26010	240
2014	26580	570
2015	27500	920
2016	28190	690
2017	29320	1 1 30
2018	30290	970
2019	31310	1020
2020	30050	-1260
2021	32520	2470
2022	35280	2760

When using a spreadsheet, you can use the command for the difference of values in two cells and copy it to the whole column.

Exercise 2. Calculate the relative annual GDP per capita growth (annual growth relative to the initial value).

Solution. To calculate relative GDP growth, we divide the value of annual GDP growth by the original value. The relative growth rate for 2003 will then be

$$\frac{x_2 - x_1}{x_1} = \frac{21\,180 - 20\,330}{20\,330} = \frac{850}{20\,330} \doteq 0.0418.$$

That's 4,18% in percent. Relative annual growth in the other years is then calculated in the same way.

Year	GDP [Euro/capita]	Annual growth [Euro/capita]	Relative annual growth [%]
2003	20 330		
2004	21180	850	4,18
2005	22010	830	3,92
2006	23200	1190	$5,\!41$

Year	GDP [Euro/capita]	Annual growth [Euro/capita]	Relative annual growth [%
2007	24 550	1 350	5,82
2008	25260	710	2,89
2009	24050	-1210	-4,79
2010	24900	850	3,55
2011	25660	760	3,05
2012	25770	110	0,43
2013	26010	240	0,93
2014	26580	510	2,19
2015	27500	920	3,40
2016	28190	690	2,51
2017	29320	1130	4,01
2018	30290	970	3,31
2019	31310	1020	3,37
2020	30050	-1260	-4,02
2021	32520	2470	8,22
2022	35280	2760	8,49

Exercise 3. Calculate the average relative annual increase in GDP per capita.

Solution. The average relative annual GDP growth rate is given by the arithmetic mean of relative GDP growth rates and is equal to 2,99 %.

This result is obtained in a spreadsheet using the AVERAGE or AVERAGEA command.

Exercise 4. Calculate the annual GDP per capita growth rate.

Solutin. The annual GDP growth rate is obtained by adding the relative growth rate to 100 % or by using the relation $z_i = \frac{x_i}{x_{i-1}}$. Thus, for 2003, we have

$$z_2 = \frac{x_2}{x_1} = \frac{21\,180}{20\,330} \doteq 1,0418$$

in percentages, i.e. $104,\!18\,\%$. In subsequent years, we calculate the annual growth rates in the same way.

Year	GDP [Euro/capita]	Annual growth [Euro/capita]	Relative annual growth [%]	Annual growth coefficient[%]
2003	20330			
2004	21180	850	4,18	104,18
2005	22010	830	3,92	103,92
2006	23200	1190	$5,\!41$	$105,\!41$
2007	24550	1350	$5,\!82$	$105,\!82$
2008	25260	710	$2,\!89$	102,89
2009	24050	-1210	-4,79	95,21
2010	24900	850	$3,\!53$	$103,\!53$
2011	25660	760	$3,\!05$	$103,\!05$
2012	25770	110	$0,\!43$	$100,\!43$
2013	26010	240	$0,\!93$	100,93
2014	26580	510	$2,\!19$	102, 19

Year	GDP [Euro/capita]	Annual growth [Euro/capita]	Relative annual growth [%]	Annual growth coefficient[%]
2015	27500	920	3,46	103,46
2016	28190	690	2,51	102,51
2017	29320	1130	4,01	104,01
2018	30290	970	3,31	103,31
2019	31310	1020	$3,\!37$	103,37
2020	30050	-1260	-4,02	$95,\!98$
2021	32520	2470	8,22	108,22
2022	35280	2760	8,49	108,49

Exercise 5. Calculate the average GDP per capita growth rate.

Solution. To obtain the average GDP growth rate, it is sufficient to use the initial and final values:

$$\overline{z}_G = \sqrt[19]{\frac{35\,280}{20\,330}} \doteq 1,0294,$$

in percentages, 102,94 %. The average GDP growth rate per capita is therefore 2,94 %. In a spreadsheet, the GEOMEAN geometric mean command can be used.

Exercise 6. Estimate the GDP per capita in 2022 based on the 2003 value using a) the average relative annual growth, b) the average growth rate.

Solution. Note that the values of the average relative growth rate and the average growth rate are different. We will use the exact value obtained in the spreadsheet for the calculation.

- a) The average relative growth rate is about 2,99 %, so to get the following value we need to multiply the original value by 1,0299. To get an estimate of the GDP per capita value, we need to calculate $20\,330 \cdot 1,0299^{19} \doteq 35\,615$ Euros per capita.
- b) Using the geometric mean of GDP growth coefficient per capita, we obtain an exact value of $20,330,0294^{19}; \doteq; 35, 28$

Literature

- Eurostat. HDP per person [online]. Dostupné z https://ec.europa.eu/eurostat/cache/visualisations/countrybubbles [cit. 9.,8.,2023].
- Eurostat. HDP per person dataset [online]. Dostupné z https://ec.europa.eu/eurostat/databrowser/view/NAMA_ [cit. 9.,8.,2023].
- Český statistický úřad. Hrubý domácí produkt metodika. Dostupné z https://www.czso.cz/csu/czso/hruby_doma hdp- [cit. 9.,8.,2023]