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Logic circuits
Which spell can turn on the correct indicator light in an overloaded elevator, prepare an orange soda
by pressing the button of a vending machine, turn off the lights in the hallway of a house after a few
minutes, or move a character on a computer screen? These and many other real-life activities are
handled by logic circuits, which we will explore in more detail in the following series of problems.
Logic circuits consist of so-called logic gates that implement logic operations. We will work only with
three basic logic gates, namely NOT (negation), AND (conjunction) and OR (disjunction), in the
exercises. The figure shows their respective symbols (according to the American ANSI/MIL standard)
in logic circuits. They are oriented so that the input direction is from the left. Inputs are understood as
statements, while outputs are compound statements.

Figure 1: Logic gate symbols

The truth values are implemented in logic circuits by voltage. Low voltage indicates a truth value of 0,
while a high voltage level indicates a value of 1. For example, if the AND gate has a low voltage level
at input A and a high voltage level at input B, the output is a low voltage level. The specific values of
the levels vary according to the specific use of the circuit. A low level of approximately 0V and a high
level of approximately 5V are common.
In the next figure we see a representation of a more complex logic circuit. For clarity, the figure also
shows the sequential compounding of statements, which correspond to the inputs or outputs of the
individual gates. The black dot indicates the node at which the logic circuit branches. Thus, the output
of one gate can be fed to multiple inputs at the same time.
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Figure 2: An example of a logic circuit

In the following exercises, switches or buttons can be placed in front of the inputs, and light bulbs can
be placed behind the outputs of the logic circuit. Let’s agree that the logic value at the input is equal
to 1 exactly when the switch is on or the button is pressed. Similarly, a light bulb lights up only when
there is a logic 1 at the corresponding output.

Exercise 1. In the circuit in the previous figure, there are switches in front of inputs A, B and C, and
a light bulb is connected to the output. If switch C is not on, in what position must switches A and
B be in order for the bulb to light?

Solution. Let p(X) denote the truth value of the statement X. We know from the assignment that
p(C) = 0, and we ask for the values of p(A) and p(B) such that p [(C ∧ (A ∨ B)) ∨ (¬ (A ∨ B))] = 1.
We will solve the exercise with reasoning.
If p(C) = 0 holds, then necessarily p(C∧ (A ∨ B)) = 0. Therefore the statement ¬(A∨B) must be true,
and therefore p(A ∨ B) = 0. However, this is possible if and only if the statements A and B are both
false. Thus, neither switch may be turned on.

Exercise 2. The logic circuit shown in the figure below is given with switches at inputs A, B and C
and a light bulb at output Z. Which switches must be turned on for the bulb to light up? Find all
solutions to the problem. If the wires cross in the diagram without a node shown, it is assumed that
there is no actual contact between the wires.

Figure 3: Assignment of exercise 2

Solution. We will solve the problem by using the truth value table. From the diagram in the assignment,
we first derive a statement consisting of the statements A, B and C, which will be equivalent to the
statement Z, see figure.
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Figure 4: Solution of exercise 2 - deriving a compound statement

For the compound statement (⋆) we now create a truth table:

A B C A ∧ ¬B A ∨ C (A ∧ ¬B) ∧ (A ∨ C)
1 1 1 0 1 0
1 1 0 0 1 0
1 0 1 1 1 1
1 0 0 1 1 1
0 1 1 0 1 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0

The table shows that the light bulb will light up if switch A is closed and switch B is not closed at the
same time. Switch C does not matter.
The problem can also be solved by equivalent modifications of the statement (⋆). First, we use the
distributive law, then the so-called idempotency law A ∧ A ⇔ A:

(A ∧ ¬B) ∧ (A ∨ C) ⇔
⇔ (A ∧ ¬B ∧ A) ∨ (A ∧ ¬B ∧ C) ⇔
⇔ (A ∧ ¬B) ∨ (A ∧ ¬B ∧ C) .

However, the compound statement (⋆⋆) is true if and only if the conjunction A ∧ ¬B is true, i.e. if A
is a true statement and B is a false statement. This implies the same conclusion about the position of
the switches that we made using the table.

Exercise 3. Design a logic circuit that, in the event of a failure of one of the two water pumps (or
both), lights up a warning lamp at the output of the circuit. As long as the pump is working, it sends
a signal corresponding to a logic one to one of the two inputs of the circuit.

Solution. Let us denote A and B the statements representing the state of the first and second pumps.
We are looking for the statement Z composed of A and B, whose truth table we know:

A B Z
1 1 0
1 0 1
0 1 1
0 0 1
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The table shows that the equivalent statement is ¬ (A ∧ B), which corresponds to the diagram of the
resulting circuit in the figure:

Figure 5: Solution of exercise 3

The problem has more solutions. For example, using de Morgan’s Morgan’s law, we get from the
previous result the equivalent statement ¬A∨¬B. A different, but also correct, circuit (diagram) would
correspond to this statement.

Exercise 4. Modify the warning device from the previous exercise. Red and green lights will now be
connected to the two outputs. If both pumps are working, the green light is on and the red light is
off. If one of the pumps fails, the red light will also light up, and if both pumps fail, only the red light
will light up. Design the corresponding logic circuit.

Solution. Similar to the previous problem, let us denote by A and B the statements representing the
state of the first and second pumps. Thus we get a truth table of the values of the unknown compound
statements R (red light) and G (green light):

A B R G
1 1 0 1
1 0 1 1
0 1 1 1
0 0 1 0

We can see that the column for the statement R is identical to the statement G in the previous exercise
(and thus we can adopt its solution), and the column for the statement G corresponds to the disjunction
A ∨ B. By using nodes and branching the circuit, we can draw a diagram of the corresponding logic
circuit:

Figure 6: Solution of exercise 4

Similar to the previous problem, this one also has multiple solutions, the correctness of which can always
be verified using the truth table. However, we will discuss one of the solutions in more detail.
Students may think that instead of an OR gate, the wires can be connected with a simple knot as shown
in the figure:
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Figure 7: Incorrect solution of the exercise 4

If there is a value of 1 on A or B (or both), can this value flow freely to the output G ? The reality is
that it doesn’t. In the opening paragraph, we noted that the truth value 1 is realized by a high voltage
level and the value 0 by its low level. Thus, for example, if there is a high voltage at the input A and a
low voltage at the input B, a short circuit will occur in the circuit, because points with different voltages
are connected by a wire. Therefore, in general, we cannot connect the outputs of different gates by
nodes in logic circuits.

Exercise 5. Design a two-input, one-output logic circuit that simulates a logical equivalence operation.

Solution. In order to construct the circuit, we need to find a compound statement equivalent to A ⇔ B
with the same truth table that contains only conjunctions, disjunctions, or negations. The defini-
tion for equivalence implies that it is true if and only if statements A and B are both true or both
false. That is, it is true if and only if the conjunction A ∧ B is true or the conjunction ¬A ∧
¬B$istrue.Thuswegettheequivalence (A ⇔ B) ⇔ (A ∧ B) ∨ (¬A ∧ ¬B) , whose right-hand side
is a statement containing only conjunctions, disjunctions and negations. We can therefore construct the
corresponding diagram:

Figure 8: Solution of exercise 5

One of the other possible solutions can be obtained by using de Morgan’s laws and by equivalent
modifications of the previous result to the statement (A ∧ B) ∨ ¬ (A ∨ B). The technical advantage of
this form is the smaller number of necessary logic elements when implementing the circuit.
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Exercise 6. After pressing the appropriate button, the coffee machine can prepare three types of
drinks: lungo, macchiato and cocoa. Drinks are prepared by mixing four ingredients (hot water, milk,
coffee and cocoa concentrate), where each ingredient has its own nozzle. Design a logic circuit with
three inputs (one for each drink) and four outputs (one for each nozzle valve) if lungo is prepared
from water and coffee concentrate, macchiato from water, milk and coffee concentrate, and cocoa
from water and cocoa concentrate.
For the sake of simplicity, let’s assume that no one thinks of pressing multiple buttons at once, so
you don’t need to deal with these cases. The ingredient is released into the cup exactly when there
is a logic one at the corresponding output.

Solution. Let us denote by C (cocoa), L (lungo) and M (macchiato) statements representing the state
of pressing the corresponding button, and further denote COC (cocoa concentrate), WA (water), COF
(coffee concentrate) and ML (milk) statements representing the opening status of the respective nozzle.
From the information in the assignment, let’s compile a table of truth values:

C L M COC WA COF ML
1 0 0 1 1 0 0
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 0 0 0 0

Rows for which there is more than one 1 in the first three columns are not taken into account, since
only one button can be pressed at a time.
It follows from the table that the equivalent pair of statements is COC and C and another equivalent
pair is the statements ML and M. The statement COF is true if and only if one of the statements L or
M is true, i.e. it is equivalent to the disjunction L∨M. And finally, the statement WA is true if and only
if any of the three statements C, L, M is true, that is WA is equivalent to the disjunction C ∨ L ∨ M.
The following figure shows a diagram of the corresponding circuit - the disjunction C∨ L∨M is realized
by inserting two OR terms, i.e. as C ∨ (L ∨ M).

Figure 9: Solution of exercise 6

All the mentioned exercises can be illustrated on various logic circuit simulators, e.g. CircuitVerse online
simulator. In the last figure, the circuit from Exercise 2 is modeled in this simulator. It is also possible
to use specialized electronic kits for illustration.
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Figure 10: CircuitVerse online simulator environment
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